| 1 | 1 | sinx | ||||
[ln(cosx)]' = | *(cosx)' = | *(−sinx) = − | = − tgx | |||
| cosx | cosx | cosx |
| 1 | sin[tg(x)] | |||
( cos[tg(x)] )' = −sin[tg(x)]*(tgx)' = −sin[tg(x)]* | = − | |||
| cos2x | cos2x |
miało być tg (x2 + x + 2)
| 1 | ||
[tg(x2 + x + 2)]' = | *(x2 + x + 2)' = | |
| cos2(x2 + x + 2) |
| 1 | 2x+1 | ||
*(2x + 1) = | |||
| cos2(x2 + x + 2) | cos2(x2 + x + 2) |