matematykaszkolna.pl
całka z egzaminu na szóstkę politechnika wrocławska Piotrek: ∫ (x6 + x3)3x3 + 2dx
20 sty 23:41
coped-zadania: integral ((x6+x3) 3 sqrt(x 3)+2) dx = 2/5 sqrt(3) x(15/2)+(2 x(9/2))/sqrt(3)+2 x+constant Possible intermediate steps: integral (2+3 sqrt(3) sqrt(x) (x3+x6)) dx Integrate the sum term by term and factor out constants: = 3 sqrt(3) integral sqrt(x) (x6+x3) dx+ integral 2 dx For the integrand sqrt(x) (x6+x3), substitute u = sqrt(x) and du = 1/(2 sqrt(x)) dx: = 6 sqrt(3) integral u2 (u12+u6) du+ integral 2 dx Expanding the integrand u2 (u12+u6) gives u14+u8: = 6 sqrt(3) integral (u14+u8) du+ integral 2 dx Integrate the sum term by term: = 6 sqrt(3) integral u14 du+6 sqrt(3) integral u8 du+ integral 2 dx The integral of u8 is u9/9: = 6 sqrt(3) integral u14 du+(2 u9)/sqrt(3)+ integral 2 dx The integral of u14 is u15/15: = (2 sqrt(3) u15)/5+(2 u9)/sqrt(3)+ integral 2 dx The integral of 2 is 2 x: = (2 sqrt(3) u15)/5+(2 u9)/sqrt(3)+2 x+constant Substitute back for u = sqrt(x): = 2/5 sqrt(3) x(15/2)+(2 x(9/2))/sqrt(3)+2 x+constant Jeśli nie rozumiesz − przetłumacz.
21 sty 09:11