całka z egzaminu na szóstkę politechnika wrocławska
Piotrek: ∫ (x6 + x3)3√x3 + 2dx
20 sty 23:41
coped-zadania: integral ((x6+x3) 3 sqrt(x 3)+2) dx = 2/5 sqrt(3) x(15/2)+(2 x(9/2))/sqrt(3)+2 x+constant
Possible intermediate steps:
integral (2+3 sqrt(3) sqrt(x) (x3+x6)) dx
Integrate the sum term by term and factor out constants:
= 3 sqrt(3) integral sqrt(x) (x6+x3) dx+ integral 2 dx
For the integrand sqrt(x) (x6+x3), substitute u = sqrt(x) and du = 1/(2 sqrt(x)) dx:
= 6 sqrt(3) integral u2 (u12+u6) du+ integral 2 dx
Expanding the integrand u2 (u12+u6) gives u14+u8:
= 6 sqrt(3) integral (u14+u8) du+ integral 2 dx
Integrate the sum term by term:
= 6 sqrt(3) integral u14 du+6 sqrt(3) integral u8 du+ integral 2 dx
The integral of u8 is u9/9:
= 6 sqrt(3) integral u14 du+(2 u9)/sqrt(3)+ integral 2 dx
The integral of u14 is u15/15:
= (2 sqrt(3) u15)/5+(2 u9)/sqrt(3)+ integral 2 dx
The integral of 2 is 2 x:
= (2 sqrt(3) u15)/5+(2 u9)/sqrt(3)+2 x+constant
Substitute back for u = sqrt(x):
= 2/5 sqrt(3) x(15/2)+(2 x(9/2))/sqrt(3)+2 x+constant
Jeśli nie rozumiesz − przetłumacz.
21 sty 09:11