| sin x−1 | ||
limx→1 | = | |
| ln x |
| cos(x−1)*x | 1*1 | |||
= limx→1 (cos (x−1))/1x = limx→1 | = | = 1 | ||
| 1 | 1 |
| sin (x−1) | x−1 | x−1 | ||||
= limx→1 | * | = limx→1 1* | = | |||
| x−1 | ln x | ln x |
lim x→∞ (pierwiastek z n2 +n−1 −
pierwiastek z n2−1)
no to jedziemy:
| n2 + n − 1 − n2 +1 | ||
= limx−>∞ | = | |
| √n2 +n−1 + √n2 − 1 |
| n | ||
= limx−>∞ | = | |
| √n2 +n−1 + √n2 − 1 |
| 1 | 1 | 1 | ||||
= limx−>∞ | = | = | ||||
| √1+1/n−1/(n2)+√1−1/(n2) | 1+1 | 2 |