| x | 1 | |||
lim | − | |||
| x−1 | lnx |
| xlnx−(x−1) | xlnx−x+1) | 0 | (xlnx−x+1)' | |||||
= | = | =[ | ]= | = | ||||
| xlnx − lnx | xlnx − lnx | 0 | (xlnx − lnx)' |
| x'lnx+x(lnx)'−(x)'+1' | 1*lnx+1−1+0 | |||
= | = | =[00]= | ||
| x'lnx+x(lnx)'−(lnx)' | 1*lnx+1−1x |
| (lnx)' | 1x | 1 | ||||
= | = | = | ||||
| (lnx+1−1x)' | 1x+0−(−1x) | 1+1 |
| 1 | ||
drobna korekta pochodna z 1x tam powina byc | ||
| x2 |