matematykaszkolna.pl
wielomiany x: Dany jest wielomian W(x) = 3x−2 i H(x) = 3x2 − x −2 . Trójmian kwadratowy G zmiennej x o współczynnikach b i c jest wyrażony wzorem G(x) = x2 +bc+c . Wyznacz wartość b i c tak, aby wielomian W(x) * G(x) − H(x) był wielomianem zerowym.
13 sty 14:34
ICSP: to nie wykonalne.
13 sty 14:49
x: racja, wielomian H(x) = 3x3 + 4x2 −x−2
13 sty 15:10
ICSP: już prędzej W(x) * G(x) = H(x) − z treści zadania W(x) * G(x) = (3x−2)(x2 + bx + c) = 3x3 + 3bx2 + 3cx − 2x2 − 2bx − 2c = 3x3 + (3b−2)x2 + (3c−2b)x − 2c z tego otrzymuję: 3b − 2 = 4 ⇔ b = 2 3c − 2b = −1 −2c = −2 ⇔ c = 1 b = 2 c = 1
13 sty 15:15
x: dziękuję emotka
13 sty 15:18