matematykaszkolna.pl
Dla jakich wartości m równanie ma 2 rózne pierwiastki Saha: Dla jakich wart. parametru m równanie x4 + 2(m−2)x2 + m2 + 1 = 0 ma dwa rózne pierwiastki rzeczywiste? Wiem, że muszę podstawić t zamiast x2, ale co z tymi założeniami i deltą? przy 4 różnych pierwiastkach delta musiała być >0, jaka jest reguła? z góry dziekuję za pomoc.
8 sty 18:14
Jolanta: t2+2(m−2)t+m2+1=0 Δ>0 Δ=(2m−4)2−4(m2+1)=4m2−16m+16−4m2−4=−16m+8 −16m+12>0 12>16m
 12 
m<

 16 
 3 
m<

 4 
8 sty 20:12
Aga: Z tego co Jolanta napisała nie wynika ,że równanie wyjściowe ma 2 różne pierwiastki rzeczywiste
8 sty 20:16
Jolanta: owszem ale jak zapisac ?
8 sty 20:19
Jack: chodzi generalnie o to, żeby dla równania z t dokładnie jeden pierwiastek był dodatni.
8 sty 20:29
krystek: 1)Δ>0 2)t1*t2<0 tzn ,że jeden pierwiastek dodatni ,a drugi ujemny
8 sty 20:33
krystek: 1)Δ>0 2)t1*t2<0 tzn ,że jeden pierwiastek dodatni ,a drugi ujemny
8 sty 20:33
Jack: ... lub dokładnie jeden pierwiastek i do tego dodatni.
8 sty 20:35
krystek: @[P[Jack] oczywiście tak Dzięki!
8 sty 20:39
Jolanta: w niektórych zadaniach jest jasno powiedziane :znajdz dwa pierwiastki o róznych znakach i wtedy sprawa jest jasna Tutaj mozna myslec ,że pierwiastkami mają być liczby o róznej wartości o znakach mowy nie ma
8 sty 20:40
krystek: Pomyśl masz równanie "dwukwadratowe" za x2 podstawiłaś t i teraz NPt1=4 a t2=3 to masz 4 rozwiązania Natomiast jeżeli t1=4 a t2=−3 to masz dwa rozwiązania. Przemyśl!
8 sty 20:43
Jack: Jolanta, w wyjściowym równaniu z "x" właśnie nie chodzi o znaki, tylko o wartości emotka. Dalej, gdy układamy równanie za pomocą zmiennej "t" (t=x2, czyli t≥0) dopiero mówimy coś o znakach ale tylko dlatego, żeby wyjściowe miało dokładnie "dwa różne pierwiastki". Krystek wyjaśnił to wyżej.
8 sty 20:47
Jolanta: Krystek to wiem ale nasze x jak mnie interesuje.Czy można okreslic ,ze będa to dwa różne pierwiastki?
8 sty 20:47
krystek: Jola, nie rozumiemy sie jeżeli t=4 ⇒x2=4 ⇒x1=2 x2=−2 i masz tylko dwa różne pierwiastki ponieważ t2=−3 stad x2=−3 nie ma innych pierwiastków.( dałam hipotetyczny przykład)
8 sty 20:53
Jolanta: Ale mnie zacmiło ,jasne z x2 muszą być liczby przeciwne ,Dziękuję za cierpliwość emotka
8 sty 20:57
krystek: Powodzenia!
8 sty 21:01