| dx | ||
∫ | ||
| x(ln2x−2lnx+5) |
| 1 | ||
| | dx = dt | | |
| x |
| dt | dt | |||
∫ | = ∫ | |||
| t2−2t+5 | (t−1)2+4 |
| ds | 1 | s | ||||
∫ | = | arctg | + C | |||
| s2+4 | 2 | 2 |
| 1 | t−1 | ||
arctg | + C | ||
| 2 | 2 |
| 1 | lnx − 1 | ||
arctg | + C | ||
| 2 | 2 |
| x6ln(x3+1) | 1 | x8 | ||||
∫x5ln(x3+1)dx = | − | ∫ | dx + C | |||
| 6 | 2 | 3x+1 |
)
a jakbyś nie wiedział co dalej z mianownikiem jeśli x3+1 to powiem
| x2 | ||
x5+x3+ | ![]() | |
| x3−1 |
| x2 | ||
tak, tak źle przepisałem x5+x2+ | ||
| x3+1 |
| dx | ||
∫ | ||
| √x(3−x) |
| dx | ||
∫ | ||
| √3−x2 |
| dx | |||||||||||||||||
∫ | − cały mianownik pod pierwiastkiem | ||||||||||||||||
|
| 3 | ||
| x− | = t | | |
| 2 |
| dx | |||||||||||
∫ | − cały mianownik pod pierwiastkiem | ||||||||||
|
| 2t | ||
arcsin | + C | |
| 3 |
| |||||||||||
arcsin | + C | ||||||||||
| 3 |
| |||||||||||
arcsin | + C | ||||||||||
| 3 |
| 4x3 + 5x2 − 3x +2 | ||
∫ | dx | |
| 2x + 1 |
| 3x | 9 | 17 | ||||
∫2x2 + | − | + | dx | |||
| 2 | 4 | 4(2x+1) |
| 3x | 9 | 1 | ||||
∫2x2dx + ∫ | dx − ∫ | dx + 17∫ | dx | |||
| 2 | 4 | (8x+4) |
| 1 | ||
| dx = | dt | | |
| 8 |
| 2x3 | 3x2 | 9x | 17 | 1 | |||||
+ | − | + | ∫ | dx + C | |||||
| 3 | 4 | 4 | 8 | t |
| 2x3 | 3x2 | 9x | 17 | ||||
+ | − | + | ln{t} + C | ||||
| 3 | 4 | 4 | 8 |
| 2x3 | 3x2 | 9x | 17 | ||||
+ | − | + | ln{2x+1} + C | ||||
| 3 | 4 | 4 | 8 |
| 1 | 1 | |||
Nie rozumiem tu skoro masz | = | a Ty dostałeś | ||
| √x(x − 3) | √x2 − 3x |
| 1 | |
? | |
| √x2 − 3 |