| tgx | ||
a) | =sin2x | |
| tgx+ctgx |
| 1−sinx | 1+sinx | −4sinx | ||||
b) | − | = | ||||
| 1+sinx | 1−sinx | cos2x |
| ctgx+1 | 1+tgx | |||
c) | = | |||
| ctgx−1 | 1−tgx |
| tgx−ctgx | tg2x−1 | |||
d) | = | |||
| tgx+ctgx | tg2x+1 |
| sinx | cosx | |||
mianownik Tobie rozpisze: | + | }= | ||
| cosx | sinx |
| sin2x+cos2x | 1 | |||
= | ||||
| sinx*cosx | sinxcosx |
proszę?
| sinx | ||
L= | *(cosxsinx)=sin2x=P | |
| cosx |
| 1 | ||
c) zamień ctgx na | ||
| tgx |
| |||||||||||
d) L = | |||||||||||
|
| 1 | ||
albo lepiej ctgx zamienic na tgx . czyli ctgx = | ||
| tgx |
| 1 | ||
w d) zamień ctg x na | sprowadz do wspólnego mianownika i wyjdzie wszystko ładnie. | |
| tgx |
| ||||||||||
= | ||||||||||
|
| |||||||||||||||||
= | |||||||||||||||||
|
| tg2 − 1 | tgx | |||
= | ||||
| tgx | tg2 + 1 |
| tg2x − 1 | |
| tg2 + 1 |
PLIS