Obwód tego okna to:
2b+2r + πr = 4π
| r(−2−π)+4π | ||
b= | ||
| 2 |
| 1 | ||
b*2r + | * πr2 | |
| 2 |
| r(−2−π)+4π | 1 | |||
f(r) = | *2r + | * πr2 | ||
| 2 | 2 |
Ob= 2x+2r+πr = 4π ⇒ 2x= 4π−2r −πr
| 1 | ||
P= 2*x*r+ | πr2 | |
| 2 |
| 1 | 1 | |||
P(r)= (4π−2r−πr)*r+ | πr2 = −2r2− | πr2+4πr | ||
| 2 | 2 |
| π | ||
P(r)= −(2+ | )*r2+4πr −−−− to funkcja kwadratowa, ramiona paraboli do dołu | |
| 2 |
| −4π | 4π | ||||||||||||
rmax= | = | ||||||||||||
| 4+π |
| 4π | ||
to 2xmax= 4π−(2+π)* | ||
| 4+π |
| 2π(2+π) | 4π | |||
xmax= 2π− | = .................. = | |||
| 4+π | 4+π |