| n | ||
12+22+32+.....+(2n−1)2= | (4n2−1) | |
| 3 |
| 1 | 1 | |||
P = | *(4*12−1} = | *3 = 1 | ||
| 3 | 3 |
| n | ||
12 + 22 +........+(2n−1)2 = | *(4n2 − 1) | |
| 3 |
| n+1 | ||
12 + 22+......+(2n−1)2+ (2n+1)2 = | *[4(n+1)2 − 1] = | |
| 3 |
| n+1 | n+1 | ||
*[4(n2 + 2n + 1) − 1] = | *[4n2 + 8n + 3] | ||
| 3 | 3 |
| n | |
*(4n2 − 1) + (2n+1)2 = | |
| 3 |
| n(4n2−1) + 3(2n+1)2 | |
= | |
| 3 |
| n(2n−1)(2n+1) + 3(2n+1)2 | |
= | |
| 3 |
| (2n+1)[n(2n−1) + 3(2n+1)] | |
= | |
| 3 |
| (2n+1)(2n2 − n + 6n + 3) | |
= | |
| 3 |
| (2n+1)( 2n2 + 5n + 3 ) | |
| 3 |
| −5 − 1 | 3 | |||
n1 = | = −U{6}(4} = − | |||
| 4 | 2 |
| −5+1 | ||
n2 = | = −1 | |
| 4 |
| (2n+1)(2n+3)(n+1) | ||
Ltezy = | = | |
| 3 |
| n+1 | |
*[(2n+1)(2n+3)] = | |
| 3 |
| n+1 | |
*(4n2 + 6n + 2n + 3) = | |
| 3 |
| n+1 | |
*(4n2 + 8n + 3) = Ptezy | |
| 3 |