| n(n+1)(n+2) | ||
1*2+2*3+...+n(n+1) = | ||
| 3 |
| 1*2*3 | ||
P = | = 2 | |
| 3 |
| n(n+1)(n+2) | ||
Założenie 1*2+ ... + n(n+1) = | ||
| 3 |
| (n+1)(n+2)(n+3) | ||
Teza: 1*2 +...+n(n+1) + (n+1)(n+2) = | ||
| 3 |
| n(n+1)(n+2) | n(n+1)(n+2) | |||
L=1*2 + ... + n(n+1) + (n+1)(n+2) ={z Zał.= | + (n+1)(n+2) = | |||
| 3 | 3 |
| 3(n+1)(n+2) | n(n+1)(n+2) + 3(n+1)(n+2) | (n+1)(n+2)(n+3) | ||||
+ | = | = | = P | |||
| 3 | 3 | 3 |
popełniałem głupi błąd robiąc to i teraz widzę jaki...