| 1−n2 | ||
( | )6n2−1 | |
| 4−n2 |
| −3 | ||
rozpisałam sobie góre na 1−n2 + 4− 4 i mi wyszło [(1+ | )(7n) ](4−n27n) | |
| 4−n2 |
| 7n | ||
bo masz w wykladniku potegi | −−−>0 wiec e0=1 | |
| 4−n2 |
| a | a | |||
(1+ | )g(x)== {(1+ | )f(x)}g/f== | ||
| f(x) | f(x) |
| 1−n2 | −3 | ||
= 1+ | |||
| 4−n2 | 4−n2 |
| a | ||
(1+ | )n= ea | |
| n |
| −3 | 7n | |||
[(1+ | )4−n2] | = (e−3)0= 1 | ||
| 4−n2 | 4−n2 |
| 5 | ||
.. jesli twój stworek tak wygląda : (1+ | ) 5n3+5 , to | |
| n3 |
| 5 | 5 | |||
limn→∞(1+ | ) 5n3+5= limn→∞(1+ | ) n35* 5n3(5n3+5)=e25 | ||
| n3 | n3 |