| 2√3x−5−4 | ||
lim | ||
| x−3 |
| 3x − 5 − 4 | ||
2limx → ∞ | = | |
| (x − 3)(√3x − 5 + 2) |
| x − 3 | 1 | 3 | ||||
6limx → ∞ | = 6 * | = | ||||
| (x − 3)(√3x − 5 + 2) | 4 | 2 |
| f(x + h) − f(x) | ||
f '(x) = lim[h→o] | ||
| h |
| √3*(x + h) − 5 − √3*x − 5 | ||
f '(x) = 2* lim[h→0] | ||
| h |
| √3*(x + h) − 5 − √3*x − 5 | ||
f '(x) = 2* lim[h→0] | * | |
| h |
| √3*(x + h) − 5 + √3*x + 5 | |
| √3*(x + h) − 5 + √3*x − 5 |
| 3*x + 3*h − 5 − 3*x + 5 | ||
f '(x) = 2* lim[h→0] | ||
| h*(√3*(x + h) − 5 + √3*x − 5) |
| 6 | ||
f '(x) = lim[h→0] | ||
| √3*(x + h) − 5 + √3*x − 5 |
| 6 | ||
f '(x) = | ||
| 2*√3 *x − 5 |
| 6 | 3 | |||
Dla xo = 3 f'(x) = | = | |||
| 2*√3*2 − 5 | 2 |