| π | 2π | π | ||||
sin2(x+ | )=sin(x− | ) sin (x + | ) | |||
| 3 | 3 | 3 |
| π | 2π | π | ||||
sin( | )−sin(x− | )sin( | )=0 | |||
| 3 | 3 | 3 |
| π | π | 2π | ||||
sin(x+ | ) [sin(x+ | )− sin(x− | )]=0 | |||
| 3 | 3 | 3 |
| π | π | π | ||||
sin(x+ | ) [ 2cos x− | sin | ] =0 | |||
| 3 | 6 | 2 |
| π | π | |||
sin (x+ | )2cos( | )=0 | ||
| 3 | 6 |
| π | π | |||
2cos (x− | ) =0 V sin( x+ | ) | ||
| 6 | 3 |
| π | π | |||
x= | +Kπ v x= | +Kπ | ||
| 6 | 6 |
| π | ||
to moja wersja. W rozwiązaniach jest : x = − | + Kπ | |
| 3 |