pytanie
tn: cześć
mam pewną wątpliwość:
jeśli delta jest równa zero to mówimy że jest jedno miejsce zerowe, ale rozwiązania dwa.
tzw. pierwiastek podwójny: x1 = x2
czyli z tego wynika, że ilość miejsc zerowych nie zawsze jest równa ilości rozwiązań.
Weźmy x2
jedno miejsce zerowe −> jeden pierwiastek −> pierwiastek podwójny.
Jeśli zaś by nam kazali wskazać dla jakich parametrów funkcja ma jedno rozwiazanie wtedy delta
musi być równa 0 więc pytam: jak to przecież jak będzie delta równa zero to będzie jedno
miejsce zerowe, ale dwa rozwiązania (co prawda równe)
Potrafi mi ktoś to rozjaśnić?
30 lis 00:06
tn: ?
30 lis 19:50
krystek: Jeżeli jedno rozwiązanie to jest tak zwany pierwiastek podwójny, jedno miejsce zerowe ;
np.x2+2x+1=0 ma jeden pierwiastek, (x−1)2=0⇒(x−1)(x−1)=0
30 lis 19:54
krystek: a(x−x1)(x−x2)=0 gdy Δ=0⇒x1=x2 i wówczas mamy (x−x0)2=0
30 lis 19:56