| π | ||
sin(x)+cos(x)=√2sin(x+ | ) | |
| 4 |
| π | π/2+2x | π/2−2x | ||||
1+sin(2x)=sin( | )+sin(2x)=2*sin( | )*cos( | = | |||
| 2 | 2 | 2 |
| π | π | π | π | π | ||||||
=2sin( | +x)*cos( | −x)=2sin2( | +x) bo cos( | −x)=sin( | +x) | |||||
| 4 | 4 | 4 | 4 | 4 |
| π | π | |||
√2sin( | +x)=2sin2( | +x) | ||
| 4 | 4 |
| π | π | |||
−2sin2( | +x)+√2sin( | +x)=0 | ||
| 4 | 4 |
| π | π | |||
2sin2( | +x)−√2sin( | +x)=0 | ||
| 4 | 4 |
| π | π | |||
sin( | +x)[2sin( | +x)−√2]=0 | ||
| 4 | 4 |
| π | ||
sin(x+ | )=0 | |
| 4 |
| π | ||
x+ | =0+kπ i k∊Z | |
| 4 |
| π | ||
x1=− | +kπ | |
| 4 |
| π | ||
2sin(x+ | )−√2=0 | |
| 4 |
| π | ||
2sin(x+ | )=√2 | |
| 4 |
| π | √2 | |||
sin(x+ | )= | |||
| 4 | 2 |
| π | π | |||
sin(x+ | )=sin( | |||
| 4 | 4 |
| π | π | |||
x+ | = | +2kπ i k∊Z | ||
| 4 | 4 |
| π | π | |||
x+ | =(π− | )+2kπ i k∊Z | ||
| 4 | 4 |
| π | π | |||
x=(π− | )− | +2kπ | ||
| 4 | 4 |
| π | ||
x4= | +2kπ | |
| 2 |
| π | π | |||
x1=− | +kπ, x2=2kπ .x3= | +2kπ | ||
| 4 | 2 |
, przecież 1+sin2x = (sinx+cosx)2
sinx+cosx=1+sin2x ⇒ (sinx+cosx)2−(sinx+cosx)=0 ⇒ (sinx+cosx)(sinx+cosx−1)=0
| π | π | |||
sinx=−cosx ⇒ sinx = −sin( | −x) ⇒ sinx = sin[−( | −x)] | ||
| 2 | 2 |
Oczywiście Ty to widzisz od razu . Ja robie tak jak na chwile obecna jestem w stanie
Moge tez to zrobić innymi dwoma sposobami
np zrobic podstawienie za sin(x) i cos(x)