| n(n+1)(2n+1) | ||
1+22+32+...+n2 wiadomo ze to wyrazenie bedzie równe | . Jednak jak obliczyc | |
| 6 |
| x(x−1)(x−2) | x(x−1) | x−2 | 1 | |||||
= | + | + c = x(x−1)[ | + | ] + c = | ||||
| 3 | 2 | 3 | 2 |
| 2x−4 + 3 | x(x−1)(2x−1) | |||
= x(x−1)* | + c = | + c. | ||
| 6 | 6 |
| x(x−1)(2x−1) | (n+1)*n*(2n+2−1) | |||
1+22+...+n2 = [ | ]1..(n+1) = | − 0 = | ||
| 6 | 6 |
| n(n+1)(2n+1) | ||
= | − OK. ![]() | |
| 6 |