Dany jest czworościan ABCD, w którym
nowy234:

∀ADB=∀BDC=∀CDA=90 stopni
Oblicz objętość czworościanu, jeżeli
DA=48 DB=49 DC=50
20 lis 21:44
Basia:
z tego zapisu wynika, że ściany boczne to trójkąty prostokątne
no to policz AB, AC i BC z tw. Pitagorasa i zobaczymy jakim trójkątem jest podstawa
20 lis 21:49
nowy234: wiem też tak liczyłem i wyszło że to normalny trójkąt
20 lis 21:52
nowy234: nie wiem potem co dalej
20 lis 21:53
Basia:
to napisz jakie są te długości boków podstawy; może jak je zobaczę coś wymyślę
20 lis 21:57
nowy234: AB=√4705 AC=√4804 BC=√4901 jeżeli jeszcze jestes
20 lis 22:24
Basia:
rzeczywiście nic to nie daje, no pole podstawy można policzyć np. z wzoru Herona
ale nie wiem skąd wziąć wysokość
nic więcej w tym zadaniu nie było powiedziane ?
jeżeli nie to zajrzyj jutro; może coś komuś przyjdzie do głowy (ja też będę myśleć)
20 lis 22:51
nowy234: no niestety nie a ogólnie dzięki za zajęcie swojego cennego czasu
20 lis 23:01
Basia:
ciekawe to zadanie; możesz napisać skąd go masz ?
20 lis 23:08
Bogdan:

A może postawić czworościan na jednej z ścian, która jest trójkątem prostokątnym.
Podaję na rysunku przykład. Teraz wysokością jest CD.
20 lis 23:23
Bogdan:

To tak, jakbyśmy wycięli czworościan z prostopadłościanu.
20 lis 23:33
Basia: Oczywiście Bogdanie, właśnie weszłam, żeby to samo napisać; jakieś zaćmienie mnie wczoraj
dopadło albo dałam się literkom zasugerować ; przecież każdy czworościan mogę sobie "postawić"
na dowolnej ścianie i uznać ją za podstawę;
Pozdrawiam
21 lis 10:30
Bogdan:
21 lis 10:31
nowy234: dzieki nie pomyślałbym o tym że to tak może byc
21 lis 12:27
Bogdan:
Powtórzę myśl już dzisiaj na forum wypowiedzianą. Umiejętność rozwiązywania zagadnień
(nie tylko zadań szkolnych), to w bardzo dużym stopniu sztuka kojarzenia.
21 lis 12:30