matematykaszkolna.pl
parametr Sonia19: Dobierz parametr a tak aby funkcja była ciągła a) f(x)= { 36−x2x−6 dla x∊R\{6} a, dla x=6 Tam jest jedna duża klamra która zaczepia też o aemotka
4 lis 23:28
yyy?: jak wpiszesz duże U to będzie duży ułąmek
4 lis 23:30
Sonia19: 0k a jak to zrobić?
4 lis 23:33
Godzio:
 36 − x2 
Policz granicę limx→6

 6 − x 
Skorzystaj z tego, że a2 − b2 = (a − b)(a + b) = −(b − a)(a + b), podałem praktycznie wszystko
4 lis 23:35
yyy?:
  36 −x2x−6 dla x∊R/{6}  
F(x) = a, dla x = 6
4 lis 23:38
Sonia19: (x−6)(x+6)x−6 zostaje x−6 podstawiamy 6 i wychodzi 0?
4 lis 23:57
Godzio: Myśl, wszystko napisałem, zjadłaś minus, i źle skróciłaś
4 lis 23:59
ZKS:
(6 − x)(6 + x) 

= 6 + x
6 − x 
5 lis 00:02
Sonia19: −(x−6)(x+6)−x+6 dobry zapis?
5 lis 00:06
Godzio: Blisko, ale dalej źle
5 lis 00:08
Sonia19: kolega wyzej ma dobrze? po co to: −(b − a)(a + b)?
5 lis 00:09
Godzio: Ehh, kolega nie napisał minusa
 36 − x2 (6 − x)(6 + x) 
limx→6

= limx→6

=
 x − 6 x − 6 
 −(x − 6)(6 + x) 
= limx→6

= limx→6−(6 + x) = − 12
 x − 6 
więc a = − 12
5 lis 00:11
Sonia19: dzieki wielkie kochany
5 lis 00:13
ZKS: Heh Godzio widzisz wprowadziłeś mnie w błąd bo spojrzałem na Twój pierwszy wpis
 36 − x2 
limx → 6

i tam właśnie tego minusa nie ma. emotka
 6 − x 
5 lis 00:14
Godzio: A bo ja źle przepisałem A później wszyscy patrzyli na mój wpis ... emotka
5 lis 00:43