5 | 4*5 | ||
+ | = 1 | ||
25 | 25 |
√5 | 5 | |||
tg(α) = | * | |||
5 | 2√5 |
1 | ||
tg(α) = | ||
2 |
tg(x+Δx)−tg(x) | ||
limΔx→0 | = | |
Δx |
tg(x)+tg(Δx) | 1 | |||
limΔx→0( | −tg(x)) | = | ||
1−tg(x)tg(Δx) | Δx |
tg(x)+tg(Δx)−tg(x)+tg2(x)tg(Δx) | ||
limΔx→0 | = | |
Δx(1−tg(x)tg(Δx)) |
tg(Δx) | 1+tg2(x) | |||
limΔx→0 | * | = | ||
Δx | 1−tg(x)tg(Δx) |
tg(Δx) | 1 | ||
(1+tg2(x))limΔx→0 | = | ||
Δx | 1−tg(x)tg(Δx) |
sin(Δx) | 1 | 1 | ||||
(1+tg2(x))limΔx→0 | *limΔx→0 | limΔx→0 | ||||
Δx | cos(Δx) | 1−tg(x)tg(Δx) |
1 | ||
f−1'(x) = | ||
f'(f−1(x)) |
1 | ||
f−1'(x) = | ||
f'(y) |
1 | ||
arctg'(x) = | ||
1+tg2(arctg(x)) |
1 | ||
arctg'(x) = | ||
1+x2 |
1 | ||
arctg'(x) = | ||
1+x2 |
1 | ||
arctg(x) = ∫0x | dt | |
1+t2 |
1 | ||
Rozłóżmy w szereg funkcję | ||
1+x2 |
1 | 1 | ||
= | |||
1+x2 | 1−(−x2) |
1 | |
= ∑n=0∞(−1)nx2n , |(−x2)| < 1 | |
1+x2 |
1 | ||
∫0x | dt = ∫0x{∑n=0∞(−1)nt2n dt} | |
1+t2 |
1 | ||
∫0x | dt =∑n=0∞{(−1)n∫0xt2ndt} | |
1+t2 |
1 | t2n+1 | |||
∫0x | dt = ∑n=0∞(−1)n | |0x | ||
1+t2 | 2n+1 |
1 | (−1)nx2n+1 | |||
∫0x | dt = ∑n=0∞ | , |(−x2)| ≤ 1 | ||
1+t2 | 2n+1 |
1 | ||
tg(α) = | a więc należy do przedziału zbieżności | |
2 |
1 | 1 | −1 | ||||
α = | ∑n=0∞ | ( | )n | |||
2 | 2n+1 | 4 |
1 | ||
Toć ciut wincej niźli 26 | stopnia | |
2 |