| 5 | 4*5 | ||
+ | = 1 | ||
| 25 | 25 |
| √5 | 5 | |||
tg(α) = | * | |||
| 5 | 2√5 |
| 1 | ||
tg(α) = | ||
| 2 |
| tg(x+Δx)−tg(x) | ||
limΔx→0 | = | |
| Δx |
| tg(x)+tg(Δx) | 1 | |||
limΔx→0( | −tg(x)) | = | ||
| 1−tg(x)tg(Δx) | Δx |
| tg(x)+tg(Δx)−tg(x)+tg2(x)tg(Δx) | ||
limΔx→0 | = | |
| Δx(1−tg(x)tg(Δx)) |
| tg(Δx) | 1+tg2(x) | |||
limΔx→0 | * | = | ||
| Δx | 1−tg(x)tg(Δx) |
| tg(Δx) | 1 | ||
(1+tg2(x))limΔx→0 | = | ||
| Δx | 1−tg(x)tg(Δx) |
| sin(Δx) | 1 | 1 | ||||
(1+tg2(x))limΔx→0 | *limΔx→0 | limΔx→0 | ||||
| Δx | cos(Δx) | 1−tg(x)tg(Δx) |
| 1 | ||
f−1'(x) = | ||
| f'(f−1(x)) |
| 1 | ||
f−1'(x) = | ||
| f'(y) |
| 1 | ||
arctg'(x) = | ||
| 1+tg2(arctg(x)) |
| 1 | ||
arctg'(x) = | ||
| 1+x2 |
| 1 | ||
arctg'(x) = | ||
| 1+x2 |
| 1 | ||
arctg(x) = ∫0x | dt | |
| 1+t2 |
| 1 | ||
Rozłóżmy w szereg funkcję | ||
| 1+x2 |
| 1 | 1 | ||
= | |||
| 1+x2 | 1−(−x2) |
| 1 | |
= ∑n=0∞(−1)nx2n , |(−x2)| < 1 | |
| 1+x2 |
| 1 | ||
∫0x | dt = ∫0x{∑n=0∞(−1)nt2n dt} | |
| 1+t2 |
| 1 | ||
∫0x | dt =∑n=0∞{(−1)n∫0xt2ndt} | |
| 1+t2 |
| 1 | t2n+1 | |||
∫0x | dt = ∑n=0∞(−1)n | |0x | ||
| 1+t2 | 2n+1 |
| 1 | (−1)nx2n+1 | |||
∫0x | dt = ∑n=0∞ | , |(−x2)| ≤ 1 | ||
| 1+t2 | 2n+1 |
| 1 | ||
tg(α) = | a więc należy do przedziału zbieżności | |
| 2 |
| 1 | 1 | −1 | ||||
α = | ∑n=0∞ | ( | )n | |||
| 2 | 2n+1 | 4 |
| 1 | ||
Toć ciut wincej niźli 26 | stopnia | |
| 2 |