matematykaszkolna.pl
Trygonometria. Joasia: Ile wynosi α, jeżeli sinα = 5/5, a cosα = 25/5 ?
4 lis 18:27
M:
6 mar 06:01
qstosz: Myślę, że nie chodzi w tym zadaniu o miarę kąta, a o sprawdzenie, czy istnieje kąt spełniający podane warunki. To zadanie zostało tu zamieszczone w 2011 roku i tamta Joasia jest już panią Joanną. Wystarczy sprawdzić, czy zachodzi sin2α + cos2α = 1
6 mar 11:16
Qbuś: emotka
6 mar 11:54
Mariusz: qstosz co nie znaczy że inne Joasie nie będą miały z takim zadaniem problemu a zadanie nie jest rozwiązane Poza tym tu może chodzić o kąt a podanie zarówno sinusa jak i cosinusa pozwala stwierdzić w której ćwiartce jest kąt Jedynka trygonometryczna pozwala stwierdzić czy taki kąt istnieje
5 4*5 

+

= 1
25 25 
Kąt α istnieje Sinus jest dodatni, cosinus także jest dodatni wobec czego kąt α znajduje się w pierwszej ćwiartce Wyznaczmy przybliżoną wartość kąta α
 5 5 
tg(α) =

*

 5 25 
 1 
tg(α) =

 2 
Obliczmy pochodną tangensa
 tg(x+Δx)−tg(x) 
limΔx→0

=
 Δx 
 tg(x)+tg(Δx) 1 
limΔx→0(

−tg(x))

=
 1−tg(x)tg(Δx) Δx 
 tg(x)+tg(Δx)−tg(x)+tg2(x)tg(Δx) 
limΔx→0

=
 Δx(1−tg(x)tg(Δx)) 
 tg(Δx) 1+tg2(x) 
limΔx→0

*

=
 Δx 1−tg(x)tg(Δx) 
 tg(Δx)1 
(1+tg2(x))limΔx→0


=
 Δx1−tg(x)tg(Δx) 
 sin(Δx) 1 1 
(1+tg2(x))limΔx→0

*limΔx→0

limΔx→0

 Δx cos(Δx) 1−tg(x)tg(Δx) 
tg'(x) = 1+tg2(x) f(f−1(x)) = x f'(f−1(x))*f−1'(x) = 1
 1 
f−1'(x) =

 f'(f−1(x)) 
 1 
f−1'(x) =

 f'(y) 
 1 
arctg'(x) =

 1+tg2(arctg(x)) 
 1 
arctg'(x) =

 1+x2 
 1 
arctg'(x) =

 1+x2 
zatem
 1 
arctg(x) = ∫0x

dt
 1+t2 
 1 
Rozłóżmy w szereg funkcję

 1+x2 
korzystając z szeregu geometrycznego
1 1 

=

1+x2 1−(−x2) 
1 

= ∑n=0(−1)nx2n , |(−x2)| < 1
1+x2 
 1 
0x

dt = ∫0x{∑n=0(−1)nt2n dt}
 1+t2 
 1 
0x

dt =∑n=0{(−1)n0xt2ndt}
 1+t2 
 1 t2n+1 
0x

dt = ∑n=0(−1)n

|0x
 1+t2 2n+1 
 1 (−1)nx2n+1 
0x

dt = ∑n=0

, |(−x2)| ≤ 1
 1+t2 2n+1 
 1 
tg(α) =

a więc należy do przedziału zbieżności
 2 
 1 1 −1 
α =

n=0

(

)n
 2 2n+1 4 
Gdybyśmy mieli zadaną dokładność to moglibyśmy obliczyć przybliżoną wartość
6 mar 12:38
:
 1 
Toć ciut wincej niźli 26

stopnia
 2 
6 mar 13:58