liczby zespolone
Greg: Witam ma takie o to zadanie: doprowadź do postaci trygonometrycznej,
z = −2 + 2i
1) Obliczam moduł z = 2
√2
Wychodzi ze cos i sinus są dla kąta 45 stopni do tego 2 ćwiartka, i teraz przedstawiam w
postaci trygonometrycznej:
z = 2
√2(cosπ − π/4 + i sinπ − π/4)
Dlaczego w rozwiązaniach ma odpowiedź ze to jest z = 2
√2(cos3/4π + i sin3/4π), skoro moge
tutaj zastosować wzór redukcyjny i powinno wyjść z= 2
√2(−cosπ\4 + i sin π/4)


30 paź 16:54
Godzio:
To jest to samo, w odpowiedzi podają taką odpowiedź którą wyliczyła by spora część studentów
30 paź 16:56
Greg: Czyli jeśli przyjmę taka "taktykę" wykorzystywania wzorów redukcyjnych to będzie ok

A mam pytanie jeszcze jeśli chodzi o wzór redukcyjny np. (cos2π − π/4 + i sin2π − π/4), wiadomo
ze mogę opuścić 2π ale czy wtedy mam kąt cos(−π/4) czy kąt cosπ/4

30 paź 17:00
Godzio:
Obojętnie, cos(−x) = cosx, z sinusem byłby już ujemny
30 paź 17:01
Greg: czyli ten minus jest obowiązujący przy kącie
30 paź 17:03
Godzio:
Jeśli chodzi o sinus to tak
30 paź 17:04