| 1 | ||
P = | absinα | |
| 2 |
| 1 | √2 | √2 | ||||
P = | * 10 * (5√6 − 5√2) * | = (25√6 − 25√2) * | = | |||
| 2 | 2 | 2 |
| 25√12 | 25√4 | 50√3 | 50 | |||||
= | − | = | − | = 25√3 − 25 = 25(√3 − 1) | ||||
| 2 | 2 | 2 | 2 |
| 25(√3 − 1) | |||||||
= | |||||||
|
| 10(√3 − 1) | ||
= | = ... | |
| ( ( 2√3 + √6 ) − √2) ) |
| 60 + 10√2 − 20√3 − 10√6 | |
dobrze narazie? | |
| 16 + 4√18 |
| 10(√3−1) | |
=
| |
| (2√3+√6)−√2 |
| 10√3−10 | (2√3+√6)+√2 | |||
= | * | =
| ||
| (2√3+√6)−√2 | (2√3+√6)+√2 |
| 60+10√18+10√6−20√3−10√6−10√2 | ||
= | =
| |
| 12+4√18+6−2 |
| 60+10√18−20√3−10√2 | (16−4√18) | |||
= | * | = ......... = ....
| ||
| 16+4√18 | (16−4√18) |
| 5√6(√3−3)+√2−30 | ||
= | ||
| 2 |