równanie logarytmiczne
mateusz: hej prosze o pomoc z tym równaniem
log5+ log(x+10)=1−log(2x−1) + log(21x−20)
wyliczyłem dziedzine (dobrze?)
D =(
2021 +
∞)
podstawa tego logarytmu to 10 ? bo nie ma napisanej podstawy nigdzie

pozdrawiam!
16 paź 15:25
Dawid: Tak podstawa to 10. Użyj własności że log(a)+log(b)=log(ab)
16 paź 15:28
mateusz: na koncu wychodzi mi delta ujemna a przed liczeniem Δ mam takie równanie
2x2 − 3x + 30 =0
przed tym mam tak że
lg(10x2 + 195x − 50) = lg(210x − 200)
16 paź 15:36
mateusz: ok źle licze
jeżeli przed liczeniem Δ
10x
2 − 115x + 150 = 0 jest takie równanie to wtedy wyniki się zgadzają
Dawid − kolejny raz dzięki wielkie
16 paź 15:40