matematykaszkolna.pl
pomocy! banan!: Dany jest graniastosłup prawidłowy czworokątny, którego pole powierzchni bocznej jest równe 480 cm2, a pole całkowite − 530 cm2. Oblicz sinusa kąta, jaki tworzy przekrój ABC1D1 tego graniastosłupa.
26 wrz 20:45
Stachu: rysunek przedstaw
26 wrz 20:47
banan!: rysunek
26 wrz 20:53
banan!: jak są te kreski po bokach to jest to wypełnione [nie umiem rysować tu]emotka
26 wrz 20:53
Stachu: Pc= 530 Pc= 2Pp+Pb z tego możemy obliczyć pole podstawy ⇒
 Pc−Pb 530−480 
Pp=

=

=25
 2 2 
Szukamy pole przekroju który jest prostokątem jeden z boków jest krawędzią podstawy graniastosłupa Wiemy że podstawą jest kwadrat o polu 25 Pp=a2 ⇒ a = 25=5 teraz szukamy dłuższy bok prostokąta Pb=480= 4*a*b( 4 prostokąty tworzą powierzchnię boczną)
 480 
480= 4*5*b ⇒ b=

= 24
 20 
Teraz patrzymy na trójkąt prostokątny który tworzą krawędz boczna krawędz podstawy oraz szukany bok prostokąta przekroju Tw.Pitagorasa : c2=a2+b2= 25+576=601 ⇒c= 601 Pole przekroju : P= 5* 601= 5601 Sprawdz czy nie popełniłem jakiegoś błędu emotka pozdrawiam
26 wrz 21:08
Stachu: oj szukałem i wogóle nie to znalazłem ale powinieneś już sam obliczyć sinus bo masz wszystko emotka
26 wrz 21:10