| dx | ||
∫ | ||
| x2+x+1+x√x2+x+1 |
| 2t2+t | t2−1 | t2+t+1 | ||||
(♪) √x2+x+1 = t − x =♫ | − | = | ||||
| 2t+1 | 2t+1 | 2t+1 |
| t2−1 | ||
(♫) x = | ||
| 2t+1 |
| 2t(2t+1) − 2(t2−1) | t2+t+1 | |||
dx = | dt = 2* | dt | ||
| (2t+1)2 | (2t+1)2 |
| t2+t+1 | ||
x2+x+1 =♪ ( | )2 | |
| 2t+1 |
| dx | ||
∫ | =ℰ | |
| x2+x+1+x√x2+x+1 |
| |||||||||||||||||||||||
= ∫ | = | ||||||||||||||||||||||
|
| t2+t+1 | dt | dt | ||||
= 2∫ | dt = 2∫ | = 2∫ | =... | |||
| (t2+t+1)2+(t2−1)(t2+t+1) | t2+t+1+t2−1 | 2t2+t |
| t | x+√2x2+x+1 | |||
2ln|t|−2ln |2t+1|+ c =2 ln | | | +C= 2ln | | | + | ||
| 2t+1 | 2x+2√2x2+x+1+1 |
?
| 1 | 3 | |||
x2+x+1 =postać kanoniczna= (x− | )2 + | . | ||
| 2 | 4 |
| 1 | √3 | |||
Podstawienie t = x− | , a potem t = | tgu. Też działa, ale moim zdaniem | ||
| 2 | 2 |
| 1 | ||
x+ | . | |
| 2 |