| αn+3 | ||
Dla jakich wartości parametru α ciąg an= | jest rosnący? | |
| n+1 |
| α(n+1)+3 | αn+α+3 | |||
an+1 = | = | |||
| n+2 | n+2 |
| αn+α+3 | αn+3 | |||
Zatem: an+1−an = | − | = | ||
| n+2 | n+1 |
| (αn+α+3)(n+1)−(αn+3)(n+2) | αn2+αn+αn+α+3n+3−αn2−2αn−3n−6 | |||
= | = | |||
| (n+2)(n+1) | (n+2)(n+1) |
| α−3 | ||
= | ||
| (n+2)(n+1) |
| α−3 | ||
Czyli | > 0 ⇔ α−3 > 0 ⇒ α > 3 | |
| (n+2)(n+1) |
| αn+3 | ||
an = | ||
| n+1 |
| 3−α | ||
an = α + | − rośnie gdy 3−α<0 → α>3. | |
| n+1 |