| 1 | 2√2 | |||
cosx = | ⇔ sinx = | (wyliczone z jedynki trygonometrycznej) | ||
| 3 | 3 |
| 1 | ||
cos= | ||
| 3 |
| x | ||
cos= | → x=1, r=3 | |
| r |
| y | ||
sin= | → z tw. Pitagorasa: | |
| r |
| 2√2 | ||
1. Z jedynk itak jak ICSP wyliczamy sinx, czyli sinx= | ||
| 3 |
| sinx | sinx*cosx | sinx | sinx*cosx+sinx | |||||
2. sinx+ | = | + | = | = | ||||
| cosx | cosx | cosx | cosx |
| sinx*(1+cosx) | 43*sinx | |||
= | =4sinx | |||
| cosx | 13 |
| 2√2 | 8√2 | |||
3. 4sinx=4* | = | |||
| 3 | 3 |