| 1 | x | |||
∫ √36 − x2 dx = | x√36 − x2 + 18arcsin | + C | ||
| 2 | 6 |
| cos2φ+1 | ||
∫√R2−x2dx =(1) ∫ydx = ∫Rcosφ*Rcosφdφ = R2∫cos2φdφ =(2) R2∫ | dφ = | |
| 2 |
| R2 | sin2φ | R2 | x√R2−x2 | x | ||||||
= | ( | +φ)+c =(1),(3) | [ | +arcsin( | )]+c = | |||||
| 2 | 2 | 2 | R2 | R |
| 1 | R2 | x | ||||
= | x√R2−x2 + | arcsin( | ) + c. | |||
| 2 | 2 | R |
| x | x | |||
x = Rsinφ → sinφ = | → φ = arcsin( | ) | ||
| R | R |
| √R2−x2 | ||
y = Rcosφ → cosφ = | . | |
| R |
| cos2φ+1 | ||
cos2φ = | . | |
| 2 |
| sin2φ | 1 | x | √R2−x2 | x√R2−x2 | ||||||
(3) | = | *2sinφcosφ =(1) | * | = | . | |||||
| 2 | 2 | R | R | R2 |